COMPUTER SUBJECT:	BASIC ML CONCEPTS GROUP WORK ASSIGNMENTS/DISCUSSION				
TYPE:					
IDENTIFICATION:	CHAPTER 4/MICL Michael Claudius				
COPYRIGHT:					
LEVEL:	EASY				
DURATION:	15-30 min				
SIZE:	10 lines!!				
OBJECTIVE:	Understanding logistic regression elements				
REQUIREMENTS:	ML Ch. 4				
COMMANDS:					

IDENTIFICATION: CHAPTER 4/MICL

ML Chapter 4 Assignments in Logistic Regresssion

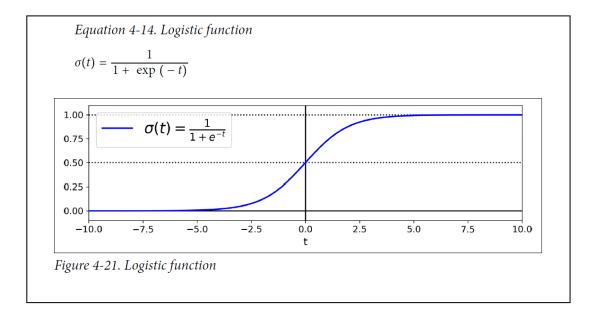
The following assignments must be solved in smaller groups (2-4 persons); and they are followed up by a short presentation/discussion in the class the very same day.

Assignment 1

What is logistic regression?

Assignment 2

What is the difference between linear regression and logistic regression?


Assignment 3

Give some examples where logistic regression is applicable?

Assignment 4

Take a look at the figure, 4.21, below.

What is the sigmoid function used for?

Fill out the following table:

Value t	-5.0	-1.0	0.0	1.0	5.0
σ(t)					

Assignment 5

Take a look at the cost function, c, for a single training instance in equation, 4.16 below.

$$c(\mathbf{\theta}) = \begin{cases} -\log(\hat{p}) & \text{if } y = 1\\ -\log(1 - \hat{p}) & \text{if } y = 0 \end{cases}$$

Calculate the cost, c, for different probabilities, p, both for instances of a positive class (y=1) and for instances of a negative class (y=0). Do this by filling out the table:

probability	0	0.1	0.3	0.5	0.7	0.9	1.0
y = 0							
y = 1							

Ring a bell?

Assignment 6

What is L_1 penalty?

What is L_1 penalty?

Are the used in Sklearn logistic regression?

Assignment 7

Suppose you want to classify people in a tourist place in Italy as tourist/native and Corona-case/not Corona case. What kind of classifier(s) would you use ?